
The Lee Fields Medal III SOLUTIONS

Time Allowed: Up to Three Hours

Tables and calculators may be used.

Answer all ten questions

1. Does there exist a rectangle of area 401 with whole-number sides? Justify your answer.

Solution: This is a trick question that was designed to make students think... is 401 a
prime? If 401 is a prime, it cannot be written as the product of whole numbers. The
task would be to prove that 401 is prime. How to do this? If 401 is not prime it has
two prime factors, say m and n:

401 = m · n.

These factors cannot both be (strictly) larger than
√
401 otherwise:

m · n >
√
401

√
401 = 401,

that is m · n would be too big. Note
√
401 ≈ 20.02 and so either m or n is a prime

number smaller than 20. Without loss of generality1, assume that m is a prime number
smaller than 20. Then

m ∈ {2, 3, 5, 7, 11, 13, 17, 19}.

We calculate 401/m for each of these and none give a whole number. Therefore none
of these m is a factor, and hence 401 is prime.

But of course 401 doesn’t have to be non-prime or composite to have whole number
factors. We have the wholly trivial:

401 = 401× 1.

2. A real number that can be written in the form

m

n
,

with m and n whole numbers is a rational number, while one which cannot is called
an irrational number. Examples of irrational numbers include

√
2, e, and π.

(a) Given that
√
2 is irrational, show that 1−

√
2 is irrational.

(b) Hence, or otherwise, write down two irrational numbers whose sum is rational.

1if m does not work, if m >
√
401, then instead we can make the same argument with n



Solution:

(a) We use a proof by contradiction. Suppose that 1 −
√
2 is not irrational. Then it

is equal to a fraction of whole numbers:

1−
√
2 =

m

n
,

with m,n ∈ Z. But this implies that

√
2 = 1− m

n
=

n−m

n
.

If m,n ∈ Z, then so is n−m. So if 1−
√
2 is not irrational, then

√
2 is rational.

This is a contradiction, indicating that the original supposition that 1−
√
2 is not

irrational is false, and so 1−
√
2 is irrational.

(b) For example,
√
2 and 1−

√
2 are irrational and:

√
2 + 1−

√
2 = 1 =

1

1
,

is rational.

3. Suppose that m > n are whole numbers. Show that m2 + n2 > 2mn. Furthermore,
show that a triangle with side lengths m2+n2, m2−n2, 2mn is a right-angled-triangle.

Solution: The first part is a trick:

(m− n)2 > 0

=⇒ m2 − 2mn+ n2 > 0

=⇒
+2mn

m2 + n2 > 2mn.

We can use the converse2 of Pythagoras Theorem. We know that m2 + n2 ≥ m2 − n2

and from the first part m2+n2 ≥ 2mn. To be a triangle, we probably need n > 0, and
this forces m2 + n2 > m2 − n2. So we have our hypotenuse h = m2 + n2, and other
sides a = m2 − n2 and b = 2mn. First we calculate the square of the hypotenuse:

h2 = (m2 + n2)2

= m4 + 2m2n2 + n4

and also:

a2 + b2 = (m2 − n2)2 + (2mn)2

= m4 − 2m2n2 + n4 + 4m2n2

= m4 + 2m2n2 + n4 = h2,

therefore the triangle with those side-lengths is a right-angled triangle.

2Pythagoras Theorem says: if ∆ is a right-angled triangle, with side-lengths a, b and hypotenuse h, then
h2 = a2 + b2. The converse of Pythagoras Theorem is also true, and says if ∆ is a triangle with side-lengths
a, b, c, and c2 = a2 + b2, then ∆ is a right-angled triangle with hypothenuse c.



4. Consider the three lines:

ℓ1 : y = 3x+ 1

ℓ2 : y = x+ 2

ℓ3 : y = −2x+ 6

Does the intersection ℓ1 ∩ ℓ2 ∩ ℓ3 contain any points? Justify your answer.

Solution: A rough sketch might help, because y = mx + c is a line of slope m and
y-intercept c... but in fact only shows us that the three intersections ℓ1 ∩ ℓ2, ℓ1 ∩ ℓ3,
and ℓ2 ∩ ℓ3 occur in the first quadrant.

Slightly better than brute force, is to find the intersections ℓ1∩ ℓ2 and see is that point
on ℓ3 also. So ℓ1 ∩ ℓ2:

y = 3x+ 1

y = x+ 2

=⇒ 3x+ 1 = x+ 2

=⇒ 2x = 1

=⇒ x =
1

2

=⇒ y =
1

2
+ 2 =

5

2
,

so ℓ1 ∩ ℓ2 = {(1/2, 5/2)}. Is this point on ℓ3?

−2x+ 6 = −2(1/2) + 6 = 5 ̸= 5

2
= y,

no. So ℓ1 ∩ ℓ2 ∩ ℓ3 is empty.

5. Find the area of the quarter-circle.

Solution: This question is thanks to @Cshearer41 on Twitter. The quarter circle is a
red herring.



Label as follows:

Note there is a theorem that a tangent, in this case [CD], to a circle is perpendicular to
the radius from the centre to the point of contact, in this case [AB]. This ensures that
∆ABC and ∆ABD are both right-angled triangles. Along with ∆ACD. Denote r :=
|AB|, x = |AC|, and y = |AD|. That is we have three unknowns, so we probably need
three equations. We can have three equations from three applications of Pythagoras
Theorem, to ∆ABC:

x2 = r2 + 22,

to ∆ABD:
y2 = r2 + 42,

and the larger ∆ACD:
62 = x2 + y2.

But we have both x and y in terms of r:

x2 + y2 = r2 + 4 + r2 + 16
!
= 36

=⇒ 2r2 = 16

=⇒
÷2

r2 = 8

r√
,r>0

=
√
8

=⇒ A =
1

4
πr2 =

1

4
π(
√
8)2 = 2π

An alternative route to r =
√
8 was provided by the competition winner Krzysztof

Przestrzelski. Consider angles ∠BAD and ∠ACB. Because ∠BAC = 90◦ − ∠ABD,



we have that ∠BAD = ∠ACB and so they have the same tangent:

tan(∠BAD) = tan(∠ACB)

=⇒ 4

r
=

r

2
=⇒
×2r

8 = r2

=⇒√
, r>0

r =
√
8

6. With the aid of a diagram, or otherwise, prove that for 0◦ < θ < 90◦

sin θ + cos θ > 1.

Solution: There are a number of approaches to this question. Perhaps the most natural
is to take a right-angled triangle with hypotenuse one and angle θ:

If we call the sides by a and b, note we have:

sin θ =
b

1
=⇒ b = sin θ,

and similarly a = cos θ:

Now we have that the straight-line distance h = 1 is shorter than the distance:

a+ b = cos θ + sin θ.

The competition winner Krzysztof Przestrzelski had an even better argument. Draw
a right-angled triangle with angle θ. It has side lengths o, a and hypotenuse length h.
As above,

o+ a > h =⇒
÷h

o

h
+

a

h
> 1 =⇒ sin θ + cos θ > 1.

Another student Qian Kai Lim had an alternative approach. They defined a function:

f(θ) = sin θ + cos θ.

They had3 f(0) = f(π/2) = 1. They showed between 0 < θ < π/2, f had a single
maximum, where f ′ = 0, at θ = π/4; and also f ′′ < 0 on 0 < θ < π/2 implying that the
curve has

⋂
geometry. The curve could not go below y = 1 without having additional

turning points.
3they needed radians as they used calculus



The student also produced a nice sketch of the curve y = f(θ):

7. Where d is the outcome of a rolled dice, consider the quadratic function:

q(x) = x2 + 3x+ d.

What is the probability that q has real roots?

Solution: When does a quadratic function have real roots? Let f(x) = ax2 + bx + c.
The roots of f are given by the “−b” formula:

x =
−b±

√
b2 − 4ac

2a
.

An issue occurs when b2−4ac < 0, when we have the square root of a negative number,
and we have complex roots. When b2 − 4ac ≥ 0, we have real roots.

For q(x) = x2 + 3x+ d, it will have real roots when:

b2 − 4ac = 32 − 4(1)(d) = 9− 4d ≥ 0 =⇒
+4d

4d ≤ 9 =⇒
÷4

d ≤ 9

4
= 2.25.

As the outcome of the roll of a dice, d ∈ {1, 2, 3, 4, 5, 6}, and so we have real roots if
d ∈ {1, 2}. Of course, therefore

P[ q has real roots] = P[d ∈ {1, 2}] = 2

6
=

1

3
.

8. A student is in the center of a square pool, the teacher at the corner. Teacher runs
three times as fast as student swims, but the student runs faster than the teacher. Can
the student escape past the teacher?



Solution: Let us set up some notation first of all. Let the pool have side-length 2L.
Let the speed of the student be v and the speed of the teacher be 3v. Let tS be the
time it takes the student to enact a plan, and tT the time it takes the teacher to chase.
Note assuming constant speed, where s is distance:

s = vt =⇒ t =
s

v
.

Define

t0 =
L

v
.

We assume that the teacher always starts in the top-right corner.

(a) Corner Approach In this approach the student heads to the furthest point from
the teacher:

To find the distance sS the student swims we form a right-angled triangle with
the arrow:

s2S = L2 + L2 = 2L2 =⇒√
, sS>0

sS =
√
2L.

Therefore the student can get to the corner in time:

tS =

√
2L

v
=

√
2t0.

How long does it take the teacher to get down there:

tT =
4L

3v
=

4

3
t0 < 1.4t0 <

√
2t0 = tS.

So the teacher is there before the student arrives, and the student does not escape.



(b) Straight Approach In this approach the student heads to the nearest point to them
(that is heading away from the teacher):

The student travels a distance L while the teacher travels a distance 3L:

tS =
L

v
= t0

tT =
3L

3v
= t0 = tS,

the teacher arrives at the side at exactly the same point as the student, and so
the student cannot escape.

(c) Angled Approach In this approach the student heads off at an angle away from
the teacher:

The distance sS that the student travels satisfies:

cos θ =
L

sS
=⇒ sS =

L

cos θ
= sec θL,

and therefore

tS =
L sec θ

v
= sec θt0.

The teacher goes a distance 3L plus a little distance d that satisfies:

tan θ =
d

L
=⇒ d = L tan θ.



Therefore

tT =
3L+ L tan θ

3v
=

(
1 +

tan θ

3

)
t0.

Recall for θ = 0 the teacher catches the student. Similarly for θ = 45◦. What
about at θ = 22.5◦? Then

tS = sec(22.5◦)t0 ≈ 1.08t0 < 1.14t0 =

(
1 +

tan(22.5◦)

3

)
= tT .

In fact it is possible to show that for all 0 < θ < tan−1(3/4), that is 0 < θ ≲ 36.87◦,
this approach will work.

It is probably good news that the student can escape — it is a much harder proposition
to show that out of the infinite number of strategies, that none work.

9. The n-th Catalan number is equal to the number of monotonic lattice paths along
the edges of a grid with n × n square cells, which do not pass above the diagonal.
A monotonic path is one which starts in the lower left corner, finishes in the upper
right corner, and consists entirely of edges pointing rightwards or upwards. Here is an
example of a monotonic lattice path which does not pass above the diagonal in a 4× 4
grid:

Find the fourth Catalan number by finding the number of such paths in a 4× 4 grid.

Solution: There are various ways of answering this question but for n = 4 it is hard to
beat brute force:

R is going right, and U is going up. There cannot be at any stage more U than R, and
each sequence must have four R and four Us. There are 14 ways; the answer is 14.



10. Three friends, Anna, Brona and Shauna, are seated in a lecture hall. Shauna can only
see Brona, Anna can see both girls seated in front of her.

In a box there are 2 white hats and 3 black hats. Three hats are taken out of the box
and are put on the three girls. The girls did not see what hats they were given and do
not know the color of the hats left in the box. When Anna was asked about the color
of her hat she said she could not answer. When Shauna heard Anna’s answer, she also
said that she could not figure out the color of her hat. Can Brona, based on the other
girls’ answers, figure out the color of the hat she is wearing?

Solution: Some notation: (x, y, z) signifies the hats of Brona, Shauna, Annas respec-
tively. Let us start with Anna. If the hat setup is (W,W, z), then Anna knows because
there are two white hats only, that she must be wearing black. She does not answer,
and so the state is (B,W, z), (W,B, z), or (B,B, z).

Shauna knows these must be the only possibilities. If she saw that Brona had a
white hat, then she would not that she, Shauna herself, would be wearing a black hat.
However she must see Brona in a black hat, and so she is stuck between (B,W, z) and
(B,B, z).

Knowing that Brona is stuck between (B,W, z) and (B,B, z), Brona knows that she
is wearing a black hat.


